Enjinx
  • Enjinx
    • What is Enjinx ?
    • Setup and Installation
      • Install on VSCode
      • Install on JetBrains IDEs
      • Subscription Plans
      • Sign in
      • Extension Settings
      • Uninstall Enjinx
    • Enjinx Chat
      • Focus
        • Current File Focus
        • Git Diff Focus
      • Context
        • Add Context
        • Add image as Context
      • Commands
        • /ask
        • /changelog
        • /commit
        • /describe
        • /docstring
        • /enhance
        • /explain
        • /find-on-github
        • /generate-best-practices
        • /help
        • /improve
        • /issues
        • /quick-test
        • /recap
        • /review
        • /test-suite
      • Chat History
      • Model Selection
      • Company Codebase
    • Code Completion
    • Coding Agent
      • Tasks
      • Continuous Code Improvement
    • Test Generation
      • Using Test Generation
      • Behaviors
      • Test Suite
      • Configuration
      • Example Test
      • Context
      • Running Tests
    • Data Sharing
  • Enjinx cover
    • What is Enjinx Cover ?
    • Setup
      • GitHub Action
      • CLI
    • Feature Flags
    • Database Usage
    • Coverage Report
    • Examples
  • Alpha Codium
    • What is Alpha Codium?
    • Setup
    • Usage
      • Configuration
      • Solving Problems
      • Solving the entire dataset
      • Evaluation
    • Technical Q&A
    • Research Paper
    • Examples
Powered by GitBook
On this page
  1. Alpha Codium
  2. Usage

Solving the entire dataset

To solve the entire dataset, run:

Copy

Copy

python -m alpha_codium.solve_dataset \
--dataset_name /path/to/dataset \
--split_name test
--database_solution_path /path/to/output/dir/dataset_output.json
  • Parameters:

    • split_name: Could be either valid or test.

    • database_solution_path: Path to the directory where solutions will be saved

    • The dataset section in the configuration file contains the configuration for the running and evaluation of a dataset.

dataset.num_iterations defines the number of iterations for each problem (pass@K). For a large number of iterations, it is recommended to introduce some randomness and different options for each iteration to achieve top results.

Important Note: Solving the entire dataset is a long process, and it may take a few days to complete with large models (e.g. GPT-4) and several iterations per problem.

PreviousSolving ProblemsNextEvaluation

Last updated 5 months ago